

CLIMATE & NET-ZERO MASTERCLASS: INSTITUTIONAL

We are pleased to offer a unique, tailored series of workshops on the science, technology, economics, and politics of climate change and the zero-carbon transition delivered by Dr Mathew Hampshire-Waugh, author of bestselling book 'CLIMATE CHANGE and the road to NET-ZERO'.

The course is structured around the Task Force on Climate-Related Financial Disclosures (TCFD) framework and provides information on carbon accounting, physical and transition risk, transition opportunities, and how to frame climate change in terms of value destruction and value creation.

Running alongside the bottom-up framework is a top-down, big picture assessment of how and why the planet is warming, where we are headed based on global agreements, the emerging technology consensus on addressing climate change, and what net-zero means in practice.

Learning Outcomes

The course provides simple intuitive explanations of climate science, energy technology, climate frameworks, and regulatory changes to build a better understanding of the climate problem, a clear vision of what a net-zero future means, and the ability to navigate potential physical, technological, and political change.

The course provides valuable insight for corporates, private equity, and financial institutions to better mitigate physical and transition risks whilst also identifying portfolio opportunities.

Tailored Content

The standard presentation session is 3 hours (180 minutes) delivered in one or multiple workshops and including Q&A. However, to ensure we deliver the highest value possible we offer tailored content so please select whether you wish to receive an abridged taster version or more detailed version of the content in each section (delivery time ranges from 60 mins to 240 minutes, split as required).

We also offer the option to build out in tandem an excel workbook which runs through simplified modelling of future emissions pathways, warming outcomes, damage estimates, carbon accounting, discounting, levelized cost calculations, technology pathways, value-at-risk analysis, and GDP impact calculations.

Expert Biography

Dr Mathew Hampshire-Waugh has spent the last ten years working as an equity analyst at global investment bank, Credit Suisse. He resigned his role as director in 2019 to commit to writing and working on climate change and new energy technology full time.

During a decade as an investment banker, Mathew worked with the top executives of many multi-billion-dollar companies and built relationships with many of the world's largest investment managers. Mathew's work centred on forecasting technology trends, financial performance, and the intrinsic value of companies involved in markets including renewable energy, electric cars, battery technology, and biofuels - publishing and pitching share price recommendations to the world's largest institutional investors, hedge funds, and private wealth managers.

Prior to his career in the banking industry, Hampshire-Waugh gained his doctorate in materials chemistry from University College London, where he worked on novel coatings and nano-materials for use in energy saving glazing and solar panel design.

Section	Abridged	Standard	Detailed
The Science of Global Warming & the Fingerprints of Change		х	
 Why CO₂ warms the planet - Basic physics of the Greenhouse Effect 			
 Evidence of the Greenhouse Effect - Temperature and CO₂ over 500 million Years 			
 What has already happened – Ongoing changes to Earth's System 			
Forecasting Future Warming		х	
 Climate Change Scenarios Explained – the basics of RCPs and SSPs 			
 How Emissions Scenarios are used to Forecast Warming 			
Global Agreements – An Abridged History		x	
The UNFCCC, Kyoto, and Paris – Global frameworks explained			
Implied warming based on Paris commitments – understanding Carbon Budgets			
Physical Impacts based on Implied Warming		x	
 Chronic Risks – Average Temperature Rise and Mean Sea Level Rise 			
 Acute Risks – Cyclones, Floods, Heat Waves, Storms, Droughts, Wildfires 			
 Tipping Points – the Known-Unknowns and Systemic Breakdown 			
Net-Zero Explained		х	
 Assessing the Solutions - Mitigation, Adaption, and Climate Engineering explained 	I		
 CO₂, Other Greenhouse Gases and Scope 1-3 Emissions Accounting 			
Global Energy and Emissions today			
Net-Zero Energy Supply - Building a Safe, Reliable, Affordable Network		х	
Techno-Economic Assessment - Fossil Fuels, Nuclear, and Renewables			
Life Cycle Emissions Analysis, Levelized Cost Analysis, Discount Rate Calculations			
Energy Storage technologies and building a Smart Electricity Grid			
Electrifying Nearly Everything – Transport, Industry, Amenities, and Agriculture		х	
The techno-economic case for Electrifying nearly all Demand			
The role of Hydrogen, Carbon Capture, and Biofuels in hard-to-abate areas			
Feeding the World Without Heating the Planet - Agriculture and Land-use			
The Emerging Initiatives, Frameworks, and Regulatory Landscape			
 Climate Frameworks – GHGp, SBTi, and TCFD 			
 Climate Strategy and Disclosure – Climate Action & The Networking Effect 			
Climate Financing – Shifting Capital from Brown to Green			
Transition & Physical Risks		х	
Strategically – Market Share, Reputational Risk, Technology Risk, Disruption			
Operationally – Chronic Physical Damage, Supply Chain Disruption, Labour Risks			
Financially – Write Downs, Access to Funding, Policy & Legal Risk, Carbon Pricing			
Transition Opportunities		х	
Strategically – Diversification, Products & Services, Acquisitions			
Operationally – Efficiency, Resilience, Cost-Benefit			
Financially – Cost of Financing, Productive Capex Opportunities			
Value Creation or Value at Risk?		х	
Assessing the Global Net-Zero opportunity – evaluating GDP outcomes		•	
Business/portfolio specific value assessment – a discounted cash flow analysis			
Total Workshop Length	60 mins	120 mins	240 mins
	33 111113		

	Select One Option
Excel Modelling Bolt-on (+120 mins)	Yes/No